

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	complexity 0.9.1 documentation

Complexity

A refreshingly simple static site generator, for those who like to work in HTML.

This friendly guide contains everything you need to know to create and publish
static HTML websites with Complexity.

	Complexity
	Documentation

	Quickstart

	Features

	Best Used With

	Community

	Installation
	Best Method: Pip

	Alternate Method 1: Setup.py

	Alternate Method 2: Easy Install

	Upgrading
	How to Upgrade From an Earlier Version

	Things to Know Before Upgrading

	Tutorial
	Part 0: Overview

	Part 1: Setup

	Part 2: What’s in a Complexity Site?

	Part 3: Generate the Site and Serve It Locally

	Part 4: Upload the Site to Amazon S3

	Advanced Usage
	Config Using complexity.yml

	JSON Auto-Loading

	Other Asset Directories and Files

	Using Complexity as a Library

	Troubleshooting
	Installation Problems

	Site Generation Problems

	Still Having Problems?

API Reference

	complexity Package
	complexity Package

	conf Module

	exceptions Module

	generate Module

	main Module

	prep Module

	serve Module

	utils Module

Project Info

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	Special Thanks

	History
	0.9.1 (2013-12-02)

	0.9.0 (2013-08-28)

	0.8.0 (2013-08-10)

	0.7 (2013-08-05)

	0.6 (2013-07-26)

	0.5 (2013-07-25)

	0.4.2 (2013-07-21)

	0.4.1 (2013-07-19)

	0.4 (2013-07-19)

	0.3 (2013-07-18)

	0.2.1 (2013-07-15)

	0.2.0 (2013-07-15)

	0.1.1 (2013-07-10)

Index

	Index

	Module Index

 Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	complexity 0.9.1 documentation

Complexity

[image: https://badge.fury.io/py/complexity.png]
 [http://badge.fury.io/py/complexity][image: https://travis-ci.org/audreyr/complexity.png?branch=master]
 [https://travis-ci.org/audreyr/complexity][image: https://pypip.in/d/complexity/badge.png]
 [https://crate.io/packages/complexity?version=latest]A refreshingly simple static site generator, for those who like to work in HTML.

Documentation

The full documentation is at http://complexity.rtfd.org.

Quickstart

Try it out:

$ pip install complexity
$ git clone git@github.com:audreyr/complexity-example.git my_proj
$ cd my_proj
$ complexity project/ www/

Once you’ve done that, open a web browser to http://127.0.0.1:9090 to see the newly generated Complexity static site.

Features

	Works on Python 2.6, 2.7, and 3.3, and on PyPy.

	Takes simple HTML templates as input.

	Data from .json files turns into template context data.

	Template inheritance, filters, etc. (Brought to you by Jinja2.)

	Auto-expands .html file URLs into cleaner URLs (e.g. about.html gets expanded to /about/)

	Minifies .html files

	Can optionally be used as a library instead of from the command line. See
Using Complexity as a Library [http://complexity.readthedocs.org/en/latest/advanced_usage.html#using-complexity-as-a-library] for details.

Best Used With

Complexity is designed to be used with these packages:

	Simplicity [https://github.com/pydanny/simplicity]: Converts ReStructuredText into JSON, which Complexity can use
as input.

	A Lot of Effort [https://github.com/audreyr/alotofeffort]: Deploys a static website (e.g. the output of Complexity)
to Amazon S3.

	Cookiecutter [https://github.com/audreyr/cookiecutter]: Creates projects from project templates.

Sure, they could have all been built into Complexity, but decoupling them
seemed like a nice thing to do.

Community

	Stuck? Don’t know where to begin? File an issue and we’ll help you.

	We love contributions. Read about how to contribute [https://github.com/audreyr/complexity/blob/master/CONTRIBUTING.rst].

 Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	complexity 0.9.1 documentation

Installation

Note

Mac and Linux users may need to use “sudo” before the install commands. But
use virtualenv [http://www.virtualenv.org/en/latest/] if you don’t want to sudo – it’s great.

Best Method: Pip

This will download and install Complexity:

$ pip install complexity

This method requires an installer tool called pip, which you can get from
http://www.pip-installer.org/.

Don’t worry, you can later uninstall Complexity like this:

$ pip uninstall complexity

Alternate Method 1: Setup.py

If you can’t use pip to install Complexity, download the latest Complexity
release from https://pypi.python.org/pypi/complexity.

Then unzip and install Complexity:

$ tar xzvf <name of file>
$ cd <name of unzipped dir>
$ python setup.py install

Alternate Method 2: Easy Install

If neither of the above methods work for some reason, try this:

$ easy_install complexity

And if that doesn’t work, see Troubleshooting.

 Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	complexity 0.9.1 documentation

Upgrading

Note

Mac users may need to use “sudo”, but try it without the “sudo”
first. (Or was that “sussudio”? “Su-su-sussudiooo!!” But use virtualenv [http://www.virtualenv.org/en/latest/]
if you don’t want to sudo.)

How to Upgrade From an Earlier Version

To upgrade Complexity:

$ pip install -U complexity

Or if using easy_install:

$ easy_install --upgrade complexity

Things to Know Before Upgrading

Some releases may require you to make changes on your end; if so, instructions
will be described in History.

Of course, if you run into any problems and need help, file an issue with
details so someone can help.

 Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	complexity 0.9.1 documentation

Tutorial

Part 0: Overview

Complexity is a refreshingly simple static site generator, for those who like to
work in HTML. It allows you to quickly see how your changes affect your site.

This quick tutorial will show you how to run this generator on your own using the
most basic structure possible. Just type the given instructions into your terminal.

If you have any specific questions you may find help in the documentation:
http://complexity.readthedocs.org/en/latest/

Or on the Github page: https://github.com/audreyr/complexity

This is the directory structure for a minimal Complexity site:

my_repo/
├── project/ <--------- input
│ ├── assets/
│ │ ├── css/
│ │ ├── js/
│ │ └── img/
│ │
│ └── templates/
│ ├── base.html
│ ├── index.html
│ └── about.html
│
└── www/ <---------- output
 ├── index.html
 ├── about/
 │ └── index.html
 ├── css/
 ├── js/
 └── img/

Part 1: Setup

First, grab a copy of the example Complexity site:

git clone https://github.com/audreyr/complexity-example.git

Open everything in a text editor. You should see a main project/ directory
with subfolders for your work:

	Study the template files in templates/. We’ll go over them shortly.

	Notice the assets/ directory. That is where you put your static files.

	Creating additional directories in assets/ (e.g. ico/) is fine; they’ll get
copied over to www/ without modification.

At the same level as project/, a www/ directory will be auto-generated.
It will contain your final rendered templates and optimized static assets.

When you’re done, you should have a project structure like that in
https://github.com/audreyr/complexity-example.

Part 2: What’s in a Complexity Site?

Here’s what a very simple Complexity site looks like:

project/templates/base.html:

<!DOCTYPE html>
<html>
<head>
 <title>{% block title %}{% endblock %} - Built with Complexity</title>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <!-- Bootstrap -->
 <link href="/css/bootstrap.min.css" rel="stylesheet" media="screen">
</head>
<body>
 <div class="container">
 <div class="navbar">
 <div class="navbar-inner">
 Complexity
 <ul class="nav">
 Home
 About

 </div>
 </div>

 {% block content %}
 {% endblock %}
 </div>

<script src="http://code.jquery.com/jquery.js"></script>
<script src="/js/bootstrap.min.js"></script>
</body>
</html>

project/templates/index.html:

{% extends "base.html" %}

{% block title %}Home{% endblock %}

{% block content %}
<div class="row">
 <div class="span12">
 <h1>Home</h1>
 <p>This is the Home page of your website.</p>
 </div>
</div>
{% endblock %}

project/templates/about.html:

{% extends "base.html" %}

{% block title %}About{% endblock %}

{% block content %}
<div class="row">
 <div class="span12">
 <h1>About</h1>
 <p>This is the About page of your website.</p>
 </div>
</div>
{% endblock %}

Notice how index.html and about.html both share a common parent template,
base.html.

Part 3: Generate the Site and Serve It Locally

Run the complexity command, passing it input and output directories:

$ complexity project/

This results in the following:

	A www/ directory gets created, containing your generated static HTML site.

	Templates are rendered and output to files smartly:

	Any templates starting with “base” are assumed to be parent templates
and not rendered on their own (e.g. base.html, base_section.html)

	Templates named index.html are output to the same corresponding
locations in www/.

	Other templates are expanded in order to hide the ”.html” extension.
For example, about.html is expanded to about/index.html.

	A lightweight server starts up locally, serving your site so that you can see
how it looks and check that everything works.

Open a web browser to http://127.0.0.1:9090. You should see your newly generated site!

In an upcoming release, the following will also occur during Complexity’s
generation process:

	CSS will be minified and concatenated.

	SCSS and/or LESS will compiled to CSS, then minified and concatenated.

	JS will be minified, concatenated, and obfuscated.

Development is happening at a rapid pace, so stay tuned. To keep updated, watch
and star https://github.com/audreyr/complexity on GitHub.

Part 4: Upload the Site to Amazon S3

For site deployment we’ll use the “alotofeffort” tool. It is designed for
use with Complexity, but it works with non-Complexity sites just as well.

Install it:

$ pip install alotofeffort

Save the following in ~/.boto:

[Credentials]
aws_access_key_id = ...
aws_secret_access_key = ...

Replace ... with your AWS access credentials, of course.

Then deploy the www/ directory to any S3 bucket that you own:

$ alotofeffort www/ your-s3-bucketname

Your site is now live! Go to the URL that alotofeffort prints out after
it finishes uploading.

Point your domain name at that URL, and you’ll be done!

 Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	complexity 0.9.1 documentation

Advanced Usage

In the tutorial, you saw an example of a minimal Complexity project layout.
Now here is an example of a more advanced Complexity site:

my_repo/
├── project/ <--------- input
│ ├── assets/
│ │ ├── css/
│ │ ├── js/
│ │ ├── img/
│ │ ├── ico/
│ │ └── robots.txt
│ ├── context/
│ │ ├── books.json
│ │ └── movies.json
│ ├── templates/
│ │ ├── base.html
│ │ ├── index.html
│ │ └── about.html
│ └── complexity.yml
│
└── www/ <---------- output
 ├── index.html
 ├── about/
 │ └── index.html
 ├── css/
 ├── js/
 ├── img/
 └── ico/

Let’s explore some of Complexity’s advanced features.

Config Using complexity.yml

You can configure a Complexity project with a complexity.yml file like
this:

Config file for a Complexity project

Directories are relative to current (project) dir
templates_dir: "templates"
assets_dir: "assets"
context_dir: "context"
output_dir: "../www"

List of templates that should not be expanded to pretty-format URLs
unexpanded_templates:
 - "404.html"
 - "500.html"

Put complexity.yml in your project root (e.g. in project/).

Here is what you can configure:

	templates_dir: Directory containing templates. Anything that needs to be
templated goes here.

	assets_dir: Directory containing static assets (to be copied over without
templating).

	context_dir: Directory containing .json files to be turned into context
variables for the templates.

	output_dir: Directory where the generated website will be output.

	unexpanded_templates: List of HTML templates for which you want to keep
the URLs unexpanded (e.g. 404.html instead of 404/index.html).

All of the above are optional.

Complexity uses sensible defaults. If you don’t specify a complexity.yml,
this is the assumed default config:

templates_dir: "templates"
assets_dir: "assets"
context_dir: "context"
output_dir: "../www"

JSON Auto-Loading

Data from .json files in your context directory automatically turns into
template context data.

For example, suppose you have this in context/books.json:

[
 {
 "url": "http://www.amazon.com/Two-Scoops-Django-Best-Practices/dp/1481879707/",
 "title": "Two Scoops of Django"
 },
 {
 "url": "http://www.amazon.com/Very-Magical-Caterpillar-Tale-Butterfly/dp/1453714081/",
 "title": "A Very Magical Caterpillar Tale"
 }
]

Then you can refer to the books in a template like this:

{% extends 'base.html' %}

{% block title %}Index{% endblock %}

{% block content %}
 <p>Here are my books:</p>
 {% for book in books %}
 {{ book.title }}
 {% endfor %}
{% endblock %}

The contents of books.json get turned into {{ books }}, which in this case
is a list that you can iterate over.

What About Static JSON Files?

If you have .json files that you want served as static assets rather than
turned into context data, that’s fine.

Just put them in assets/js/ (or anywhere in assets/), and they’ll get
copied over to the output directory like any other static asset.

Other Asset Directories and Files

You can create any type of asset directory or file that you want in assets/
(or your desired assets directory).

All assets will get copied over to www/ when you generate your site.

Note

Better handling/processing of assets will be implemented in an
upcoming release, including CSS/JS minification, image optimization,
and SASS and/or LESS compilation.

Using Complexity as a Library

Complexity can be used just like any other Python package.

You can simply call the Complexity API like this:

from complexity.main import complexity

complexity('project/', 'www/')

Calling other Complexity API functions is just as straightforward:

from complexity import generate

Optionally generate context if you need to
context = generate_context(context_dir='project/context/')

Generate HTML from your templates (and context, if you have it)
generate.generate_html(templates_dir='project/templates/', output_dir='www/', context=context)

Copy assets over
generate.copy_assets(assets_dir='project/assets/', output_dir='www/')

This allows you to use Complexity as a dependency in your own Python projects.

Note

As of this release, the API works, but it is subject to change.
Please pin your dependencies if you need this to be stable, and keep an eye
on this section for changes when you upgrade.

 Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	complexity 0.9.1 documentation

Troubleshooting

Installation Problems

Problem: Pip Fails

Don’t worry if pip fails like this:

$ pip install complexity
...
error: could not create '/Library/Python/2.7/site-packages/complexity':
Permission denied

We’ve got a couple of solutions for that.

Best Solution: Use Virtualenv

	Install virtualenv systemwide with pip:

$ sudo pip install virtualenv

	Create a virtualenv for Complexity:

$ virtualenv complexity-env
$ source complexity-env/bin/activate
 (or complexity-env/Scripts/activate.bat on Windows)
(complexity-env) $

	Install Complexity into the virtualenv:

(complexity-env) $ pip install complexity

Alternate Solution: Install Systemwide

	Install Complexity systemwide with pip:

$ sudo pip install complexity

	If that doesn’t work, you can use easy_install instead:

$ sudo easy_install complexity

Site Generation Problems

Problem: Site Generation Fails

If you get an error like this:

jinja2.exceptions.TemplateSyntaxError: Unexpected end of template. Jinja
was looking for the following tags: 'endblock'. The innermost block that
needs to be closed is 'block'.

Then check your templates carefully and make sure that you’ve closed all
blocks properly with {% endblock %}.

Still Having Problems?

File an issue here [https://github.com/audreyr/complexity/issues/new] with the following info:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the problems.

 Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	complexity 0.9.1 documentation

complexity Package

complexity Package

complexity

Main package for Complexity.

conf Module

complexity.conf

Functions for reading a complexity.yml configuration file and doing various
configuration-related things.

	
complexity.conf.get_unexpanded_list(conf_dict)[source]

	Given a configuration dict, returns the list of templates that were
specified as unexpanded.

	
complexity.conf.read_conf(directory)[source]

	Reads and parses the complexity.yml configuration file from a
directory, if one is present.
:param directory: Directory to look for a complexity.yml file.
:returns: A conf dict, or False if no complexity.yml is present.

exceptions Module

complexity.exceptions

All exceptions used in the Complexity code base are defined here.

	
exception complexity.exceptions.ComplexityException[source]

	Bases: Exception

Base exception class. All Complexity-specific exceptions subclass
ComplexityException.

	
exception complexity.exceptions.MissingTemplateDirException[source]

	Bases: complexity.exceptions.ComplexityException

Raised when a project is missing a templates/ subdirectory.

	
exception complexity.exceptions.NonHTMLFileException[source]

	Bases: complexity.exceptions.ComplexityException

Raised when a project’s templates/ directory contains a non-HTML file.

	
exception complexity.exceptions.OutputDirExistsException[source]

	Bases: complexity.exceptions.ComplexityException

Raised when a project’s output_dir exists and no_input=True.

generate Module

main Module

prep Module

complexity.prep

Functions for preparing a Complexity project for static site generation,
before it actually happens.

	
complexity.prep.prompt_and_delete_cruft(output_dir)[source]

	Asks if it’s okay to delete output_dir/.
If so, go ahead and delete it.

	Parameters:	output_dir (directory) – The Complexity output directory, e.g. www/.

serve Module

complexity.serve

Functions for serving a static HTML website locally.

	
complexity.serve.serve_static_site(output_dir, port=9090)[source]

	Serve a directory containing static HTML files, on a specified port.

	Parameters:	output_dir – Output directory to be served.

utils Module

complexity.utils

Helper functions used throughout Complexity.

	
complexity.utils.make_sure_path_exists(path)[source]

	Ensures that a directory exists.

	Parameters:	path – A directory path.

	
complexity.utils.query_yes_no(question, default='yes')[source]

	Ask a yes/no question via raw_input() and return their answer.

	Parameters:	
	question – A string that is presented to the user.

	default – The presumed answer if the user just hits <Enter>.
It must be “yes” (the default), “no” or None (meaning
an answer is required of the user).

The “answer” return value is one of “yes” or “no”.

Adapted from
http://stackoverflow.com/questions/3041986/python-command-line-yes-no-input
http://code.activestate.com/recipes/577058/

	
complexity.utils.unicode_open(filename, *args, **kwargs)[source]

	Opens a file as usual on Python 3, and with UTF-8 encoding on Python 2.

	Parameters:	filename – Name of file to open.

 Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	complexity 0.9.1 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/audreyr/complexity/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
is open to whoever wants to implement it.

Write Documentation

Complexity could always use more documentation, whether as part of the
official Complexity docs, in docstrings, or even on the web in blog posts,
articles, and such.

Create Examples

Some examples of real Complexity sites, whether open-source or closed-source,
would be awesome.

If you create an example Complexity site, file an issue so that it can be
linked from the docs.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/audreyr/complexity/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up complexity for local development.

	Fork the complexity repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/complexity.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv complexity
$ cd complexity/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 complexity tests
 $ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, and PyPy. Check
https://travis-ci.org/audreyr/complexity/pull_requests and make sure that
the tests pass for all supported Python versions.

Tips

To run a particular test:

$ python -m unittest tests.test_complexity.TestComplexity.test_make_sure_path_exists

To run a subset of tests:

$ python -m unittest tests.test_complexity

 Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	complexity 0.9.1 documentation

Credits

Development Lead

	Audrey Roy (@audreyr [https://github.com/audreyr])

Contributors

	Daniel Greenfeld (@pydanny [https://github.com/pydanny])

	Marko Mrdjenovic (@friedcell [https://github.com/friedcell])

	Alja Isakovic (@ialja [https://github.com/ialja])

Special Thanks

	Daniel Greenfeld greatly helped during Complexity’s initial development and
came up with the name.

	Complexity Sphinx theme is a heavily customized version of
Kenneth Reitz’s Requests theme [http://python-requests.org], which itself is a modified version of
Armin Ronacher’s Flasky theme [http://flask.pocoo.org/].

 Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	complexity 0.9.1 documentation

History

0.9.1 (2013-12-02)

	Depend on Jinja2 >= 2.4, not == 2.7.

0.9.0 (2013-08-28)

	CONFIG CHANGE: Configuration is now via a complexity.yml file inside the
project, instead of a complexity.json file.

	Support for an unexpanded_templates config option (#23).

	Support for non-HTML files in templates/ (or whatever you set
templates_dir to be).

See http://complexity.readthedocs.org/en/latest/advanced_usage.html#config-using-complexity-yml
for more info.

0.8.0 (2013-08-10)

	USAGE CHANGE: At the command line, Complexity no longer takes an output_dir
argument. It now assumes that your output_dir is www/ by default, but you
can customize it in complexity.json.

	Support for configuration via complexity.json: you can specify any or all
of the following key/value pairs:
	output_dir

	templates_dir

	assets_dir

	context_dir

See http://complexity.readthedocs.org/en/latest/advanced_usage.html#config-using-complexity-json
for more info.

0.7 (2013-08-05)

A couple of small but important renames. If you rely on either of the following
defaults, you will need to rename them in your Complexity project.

	Directory parameter for .json files to be turned into context data has been
renamed from json_dir to context_dir.

	Default context directory value json/ has been changed to context/.

Sometimes you want your .json files to be turned into context variables, and
sometimes you don’t. This rename alleviates confusion when working with
non-context .json files.

0.6 (2013-07-26)

	Support for multi-level template directories. (Upgrade to at least 0.6 if
you want to have folders within folders and beyond in templates/.)

	Skip non-HTML files in templates/ rather than raising NonHTMLFileException.

0.5 (2013-07-25)

	Improved static site generation API - better parameters are used.

	Files in the root of assets/ (or the asset directory) now get copied over to the output.

	Much more documentation.

0.4.2 (2013-07-21)

	Make reading of JSON files from json/ optional.

0.4.1 (2013-07-19)

	Fix reading of JSON files from json/.

0.4 (2013-07-19)

	Project layout is now:

my_repo/
├── project/ <--------- input
│ ├── assets/
│ │ ├── css/
│ │ ├── js/
│ │ └── img/
│ ├── json/
│ │ └── stuff.json
│ └── templates/
│ ├── base.html
│ ├── index.html
│ └── about.html
└── www/ <---------- output (generated)
 ├── index.html
 ├── about/
 │ └── index.html
 ├── css/
 ├── js/
 └── img/

	Assets are copied over to www/ during site generation.

	If the www/ directory was previously created, it prompts the user and then
deletes it before site regeneration.

	Templates starting with base are not generated as individual pages. They
are meant to be extended in other templates.

0.3 (2013-07-18)

	Graceful shutdown/restart of dev server.

	Required input and output dir arguments.

	Optional port argument.

	Improved server start/stop messages.

	Major internal refactor.

0.2.1 (2013-07-15)

	Fixes to setup.py.

0.2.0 (2013-07-15)

	Data from .json files now gets read as template context data.

	Tested (and passing!) on Python 2.6, 2.7, 3.3, PyPy.

0.1.1 (2013-07-10)

	First release on PyPI.

 Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	complexity 0.9.1 documentation

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 complexity	

 	
 	
 complexity.__init__	

 	
 	
 complexity.conf	

 	
 	
 complexity.exceptions	

 	
 	
 complexity.prep	

 	
 	
 complexity.serve	

 	
 	
 complexity.utils	

 Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	complexity 0.9.1 documentation

Index

 C
 | G
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | U

C

 	

 	complexity.__init__ (module)

 	complexity.conf (module)

 	complexity.exceptions (module)

 	complexity.prep (module)

 	

 	complexity.serve (module)

 	complexity.utils (module)

 	ComplexityException

G

 	

 	get_unexpanded_list() (in module complexity.conf)

M

 	

 	make_sure_path_exists() (in module complexity.utils)

 	

 	MissingTemplateDirException

N

 	

 	NonHTMLFileException

O

 	

 	OutputDirExistsException

P

 	

 	prompt_and_delete_cruft() (in module complexity.prep)

Q

 	

 	query_yes_no() (in module complexity.utils)

R

 	

 	read_conf() (in module complexity.conf)

S

 	

 	serve_static_site() (in module complexity.serve)

U

 	

 	unicode_open() (in module complexity.utils)

 Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

 _static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

modules.html

 Navigation

 		
 index

 		
 modules |

 		complexity 0.9.1 documentation »

complexity

		complexity Package
		complexity Package
		complexity

		conf Module
		complexity.conf

		exceptions Module
		complexity.exceptions

		generate Module

		main Module

		prep Module
		complexity.prep

		serve Module
		complexity.serve

		utils Module
		complexity.utils

 © Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		complexity 0.9.1 documentation »

 All modules for which code is available

		complexity.conf

		complexity.exceptions

		complexity.prep

		complexity.serve

		complexity.utils

 © Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

_modules/complexity/utils.html

 Navigation

 		
 index

 		
 modules |

 		complexity 0.9.1 documentation »

 		Module code »

 Source code for complexity.utils

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""
complexity.utils

Helper functions used throughout Complexity.
"""

import errno
import os
import sys

PY3 = sys.version > '3'
if PY3:
 pass
else:
 import codecs
 input = raw_input

[docs]def make_sure_path_exists(path):
 """
 Ensures that a directory exists.

 :param path: A directory path.
 """
 try:
 os.makedirs(path)
 except OSError as exception:
 if exception.errno != errno.EEXIST:
 return False
 return True

[docs]def unicode_open(filename, *args, **kwargs):
 """
 Opens a file as usual on Python 3, and with UTF-8 encoding on Python 2.

 :param filename: Name of file to open.
 """
 if PY3:
 return open(filename, *args, **kwargs)
 kwargs['encoding'] = "utf-8"
 return codecs.open(filename, *args, **kwargs)

[docs]def query_yes_no(question, default="yes"):
 """
 Ask a yes/no question via `raw_input()` and return their answer.

 :param question: A string that is presented to the user.
 :param default: The presumed answer if the user just hits <Enter>.
 It must be "yes" (the default), "no" or None (meaning
 an answer is required of the user).

 The "answer" return value is one of "yes" or "no".

 Adapted from
 http://stackoverflow.com/questions/3041986/python-command-line-yes-no-input
 http://code.activestate.com/recipes/577058/

 """
 valid = {"yes": True, "y": True, "ye": True, "no": False, "n": False}
 if default is None:
 prompt = " [y/n] "
 elif default == "yes":
 prompt = " [Y/n] "
 elif default == "no":
 prompt = " [y/N] "
 else:
 raise ValueError("invalid default answer: '%s'" % default)

 while True:
 sys.stdout.write(question + prompt)
 choice = input().lower()

 if default is not None and choice == '':
 return valid[default]
 elif choice in valid:
 return valid[choice]
 else:
 sys.stdout.write("Please respond with 'yes' or 'no' "
 "(or 'y' or 'n').\n")

 © Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

_themes/README.html

 Navigation

 		
 index

 		
 modules |

 		complexity 0.9.1 documentation »

Complexity Sphinx Style

This directory contains the Complexity Sphinx theme and styles.

It is a derivative of the Sphinx styles that Kenneth Reitz uses in most of his
projects, which is a derivative of Armin Ronacher’s themes for Flask and Flask
related projects.

Out of respect to both Armin Ronacher and Kenneth Reitz, this theme has been
heavily customized so as to present a very different look and feel.

This theme may be used by Complexity-related projects without modification.

If you use it for a project unrelated to Complexity, customize it heavily so
that it looks substantially different.

 © Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

_modules/complexity/conf.html

 Navigation

 		
 index

 		
 modules |

 		complexity 0.9.1 documentation »

 		Module code »

 Source code for complexity.conf

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""
complexity.conf

Functions for reading a `complexity.yml` configuration file and doing various
configuration-related things.
"""

import logging
import os
import yaml

[docs]def read_conf(directory):
 """
 Reads and parses the `complexity.yml` configuration file from a
 directory, if one is present.
 :param directory: Directory to look for a `complexity.yml` file.
 :returns: A conf dict, or False if no `complexity.yml` is present.
 """

 logging.debug("About to look for a conf file in {0}".format(directory))
 conf_file = os.path.join(directory, 'complexity.yml')

 if os.path.isfile(conf_file):
 with open(conf_file) as f:
 conf_dict = yaml.safe_load(f.read())
 return conf_dict
 return False

[docs]def get_unexpanded_list(conf_dict):
 """
 Given a configuration dict, returns the list of templates that were
 specified as unexpanded.
 """

 return conf_dict.get('unexpanded_templates', ())

 © Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

_modules/complexity/serve.html

 Navigation

 		
 index

 		
 modules |

 		complexity 0.9.1 documentation »

 		Module code »

 Source code for complexity.serve

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""
complexity.serve

Functions for serving a static HTML website locally.
"""

import os
import sys

PY3 = sys.version > '3'
if PY3:
 import http.server as httpserver
 import socketserver
else:
 import SimpleHTTPServer as httpserver
 import SocketServer as socketserver

[docs]def serve_static_site(output_dir, port=9090):
 """
 Serve a directory containing static HTML files, on a specified port.

 :param output_dir: Output directory to be served.
 """
 os.chdir(output_dir)
 Handler = httpserver.SimpleHTTPRequestHandler

 # See http://stackoverflow.com/questions/16433522/socketserver-getting-rid-
 # of-errno-98-address-already-in-use
 socketserver.TCPServer.allow_reuse_address = True

 httpd = socketserver.TCPServer(("", port), Handler)
 print("serving at port", port)

 try:
 httpd.serve_forever()
 except (KeyboardInterrupt, SystemExit):
 print("Shutting down...")
 httpd.socket.close()
 sys.exit()

 © Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 modules |

 		complexity 0.9.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

_modules/complexity/exceptions.html

 Navigation

 		
 index

 		
 modules |

 		complexity 0.9.1 documentation »

 		Module code »

 Source code for complexity.exceptions

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""
complexity.exceptions

All exceptions used in the Complexity code base are defined here.
"""

[docs]class ComplexityException(Exception):
 """
 Base exception class. All Complexity-specific exceptions subclass
 `ComplexityException`.
 """

[docs]class MissingTemplateDirException(ComplexityException):
 """
 Raised when a project is missing a `templates/` subdirectory.
 """

[docs]class NonHTMLFileException(ComplexityException):
 """
 Raised when a project's `templates/` directory contains a non-HTML file.
 """

[docs]class OutputDirExistsException(ComplexityException):
 """
 Raised when a project's output_dir exists and no_input=True.
 """

 © Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/comment-bright.png

_modules/complexity/prep.html

 Navigation

 		
 index

 		
 modules |

 		complexity 0.9.1 documentation »

 		Module code »

 Source code for complexity.prep

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""
complexity.prep

Functions for preparing a Complexity project for static site generation,
before it actually happens.
"""

import os
import shutil

from . import utils

[docs]def prompt_and_delete_cruft(output_dir):
 """
 Asks if it's okay to delete `output_dir/`.
 If so, go ahead and delete it.

 :param output_dir: The Complexity output directory, e.g. `www/`.
 :paramtype output_dir: directory
 """
 if not os.path.exists(output_dir):
 return True

 ok_to_delete = utils.query_yes_no(
 'Is it okay to delete {0}?'.format(output_dir)
)
 if ok_to_delete:
 shutil.rmtree(output_dir)
 return True
 else:
 print(
 "Aborting. Please manually remove {0} and retry."
 .format(output_dir)
)
 return False

 © Copyright 2013, Audrey Roy.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/minus.png

_static/file.png

